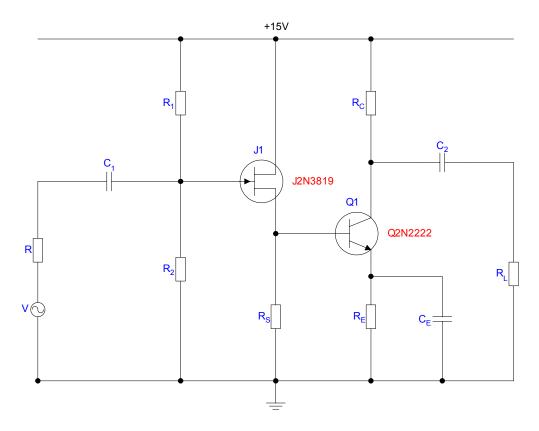

Analogue Coursework — Part 1

Design of a JFET/BJT common-drain / common-emitter cascade amplifier with an approximate 3dB low-frequency cut-off of 50Hz.

school of electrical and mechanical engineering

COURSE:	BEng (HONS) Electronic Systems
MODULE:	EEE508J1 - Electronic Circuit Design
BY:	Colin K McCord
DATE:	10/11/2001


CONTENTS

(a) Design a JFET/BJT common-drain / common-emitter cascade amplifier	Pages 1 to 3
(b) Estimate the input resistance, the output resistance and the voltage gain	Page 4
(c) Draw a high-frequency equivalent circuit and estimate 3 _{dB} high-frequency cut-off	Pages 5 to 6
(d) Simulation of circuit and comparison of results with calculated / designed values	Pages 7 to 13
Appendix 1 – PSpice Output File	Pages 14 to 17
Appendix 2 – JFET 2N3819 Datasheet	Pages 18 to 22
Appendix 3 – BJT 2N2222 Datasheet	Pages 23 to 27

(a) Design a JFET/BJT common-drain / common-emitter cascade amplifier

Using a 15V power supply, with an approximate 3dB low-frequency cut-off of 50Hz. The amplifier input is capacitive coupled to a 10K Ω source and the output is capacitive coupled to a 1k Ω load. Transistors J2N3819 and Q2N2222 are available in the circuit simulation package PSpice.

Circuit diagram shown below (resistor and capacitor values will be calculated): -

Available transistors have the following parameter values (from datasheets): -

J2N3819	<u>Q2N2222</u>
I _{DSS} = 10mA	$V_A = 74V$
$ V_p = 3V$	$h_{fe} = \beta = 150$

Note: $V_{CC} = 15V$ $RL = 1K\Omega$ $R = 10K\Omega$ 3dB low-frequency cut-off of 50Hz

Resistor design by inspection

Let
$$I_D = \frac{I_{DSS}}{4} = \frac{10 \times 10^{-3}}{4} = 2.5 \text{mA}$$

$$V_{\rm GS} = \frac{V_p}{2} = \frac{-3}{2} = -1.5 \rm V$$

Let $I_C = 1 \text{mA}$

Let
$$V_G = \frac{V_{CC}}{3} = \frac{15}{3} = 5V$$

Let
$$R_2 = 500 \text{K} \implies R1 = 1 \text{M}\Omega$$

$$V_{\rm S} = V_{\rm G} + |V_{\rm GS}| = 5 + 1.5 = 6.5 V$$

$$R_{\rm S} = \frac{V_{\rm S}}{I_{\rm D}} = \frac{6.5}{2.5 \times 10^{-3}} = 2.6 \times 10^3 = 2.6 \rm{K}\Omega$$

$$V_E = V_S - 0.7 = 6.5 - 0.7 = 5.8V$$
 $R_E = \frac{V_E}{I_C} = \frac{5.8}{1 \times 10^{-3}} = 5.8 \times 10^3 = 5.8K\Omega$

Let
$$V_C = \frac{2V_{CC}}{3} = 10V$$
 $R_C = \frac{V_{CC} - V_C}{I_C} = \frac{15 - 10}{1mA} = 5K\Omega$

Capacitor design using method of short-circuit timer constants

f = 50Hz

Using the method of short-circuit time constants, the low-frequency cut-off ω_L is given by

$$1.15 \overline{\varpi}_L \approx \sum_{i=1}^N \frac{1}{C_i R_{is}} = \frac{3}{\tau}$$

Since this expression is generally accurate, whether or not a dominant pole exists, it is convenient to make the entire time-constants equal, so that each capacitor plays and equal role in determining the 3dB cut-off frequency. Let the time-constant be donated by τ .

$$\varpi_L = 2\pi f = 2\pi 50 = 100\pi$$
 $\tau = \frac{3}{1.15 \times 100\pi} = 8.30374 \times 10^{-3}$

Design of C₁

 C_1 "sees" resistance R and R_{in} .

$$R_{in} = R_1 \parallel R_2 = \frac{500 \text{K} \times 1\text{M}}{500 \text{K} + 1\text{M}} = \frac{500 \times 10^9}{1.5 \times 10^6} = 333.33 \text{K}\Omega$$

EEE508J1 – Electronic Circuit Design

$$C_1 = \frac{\tau}{R + R_{in}} = \frac{8.3 \times 10^{-3}}{10K + 333K} = 24.1983 \times 10^{-9} = 24.2$$
nF

Design of C_2

 C_2 "sees" resistance R_0 and R_L .

$$R_{\rm O} = R_{\rm C} || r_{\rm O}$$
 $r_{\rm O} = \frac{V_{\rm A}}{I_{\rm C}} = \frac{74}{1 \times 10^{-3}} = 74 {\rm K} \Omega$

$$R_{O} = 5K || 74K = \frac{5K \times 74K}{5K + 74K} = \frac{370 \times 10^{6}}{79 \times 10^{3}} = 4.68354 \times 10^{3} = 4.68K\Omega$$

$$C_2 = \frac{\tau}{R_0 + R_L} = \frac{8.3 \times 10^{-3}}{4.68 \text{K} + 1 \text{K}} = \frac{8.3 \times 10^{-3}}{5.68 \times 10^3} = 1.46127 \times 10^{-6} = 1.46 \mu \text{F}$$

Design of C_E

$$C_E$$
 "sees" resistance $R_E \parallel \left\{ r_e + \frac{R_{oi}}{\beta} \right\}$.

$$R_{oi} = R_{S} || \frac{1}{g_{m}} \qquad \qquad g_{m} = \frac{2I_{DSS}}{|V_{p}|} \sqrt{\frac{I_{D}}{I_{DSS}}} = \frac{2 \times 10 \times 10^{-3}}{3} \sqrt{\frac{2.5 \times 10^{-3}}{10 \times 10^{-3}}} = 3.3333 \times 10^{-3} = 3.333 \text{mA/V}$$

$$R_{oi} = 2.6\text{K} || \frac{1}{3.3333 \times 10^{-3}} = \frac{2.6\text{K} \times 300}{2.6\text{K} + 300} = \frac{780 \times 10^3}{2.9 \times 10^3} = 268.966 = 268.97\Omega$$

$$r_{\rm e} = \frac{25 {\rm mV}}{{\rm I_E}} = \frac{25 \times 10^{-3}}{1 \times 10^{-3}} = 25 \Omega$$

$$R_{E} \parallel \left\{ r_{e} + \frac{R_{oi}}{\beta} \right\} = 5.8 \text{K} \parallel \left\{ 25 + \frac{268.97}{150} \right\} = 5.8 \text{K} \parallel 26.79 = \frac{5.8 \text{K} \times 26.79}{5.8 \text{K} + 26.79} = 26.6699 \Omega$$

$$C_E = \frac{\tau}{33.802} = \frac{8.3 \times 10^{-3}}{26.6699} = 311.212 \times 10^{-6} = 311.21 \mu F$$

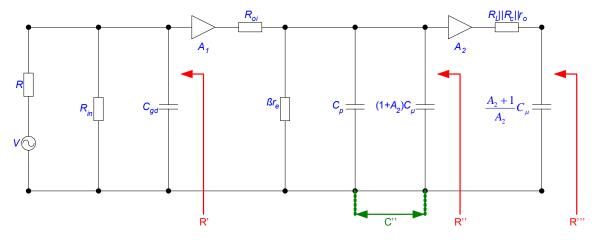
(b) Estimate the input resistance, the output resistance and the voltage gain

$$R_{in2} = \beta r_e = 150 \times 25 = 3.75 \text{K}\Omega$$

 $\frac{V_{\rm S}}{V_{g}} = \frac{R_{\rm S} ||R_{in2}}{\{R_{\rm S} ||R_{in2}\} + \frac{1}{g_{m}}} = \frac{2.6 \text{K} || 3.75 \text{K}}{\{2.6 \text{K} || 3.75 \text{K}\} + 300} = \frac{1.53543 \times 10^{3}}{1.83543 \times 10^{3}} = 0.836551$

$$\frac{V_g}{V} = \frac{R_{in}}{R_S + R_{in}} = \frac{333.33 \times 10^3}{2.6 \times 10^3 + 333.33 \times 10^3} = \frac{333.33}{335.93} = 0.99226$$

 $\frac{V_{\rm O}}{V_{\rm S}} = \frac{R_{\rm C} ||R_{\rm L}||r_{\rm O}}{r_{\rm e}} = \frac{5{\rm K} ||1{\rm K}||74{\rm K}}{25} = \frac{824.053}{25} = 32.9621 = 33$


$$\frac{V_O}{V} = \frac{V_S}{Vg} \times \frac{V_g}{V} \times \frac{V_O}{V_S} = 0.836551 \times 0.99226 \times 32.9621 = 27.3611$$

Voltage gain =
$$\frac{V_0}{V}$$
 = 27.36

Input resistance (R_{in}) was calculated during the design of C_1 : -

Output resistance (R_0) was calculated during the design of C_2 : -

(c) Draw a high-frequency equivalent circuit and estimate 3_{dB} high-frequency cut-off

Neglecting r_X and C_{gs} , high frequency equivalent for the cascade amplifier circuit is: -

Transistors have the following parameter values (from PSpice output file): -

<u>J2N3819</u>	<u>Q2N2222</u>
$\overline{C_{gd}} = 671 \times 10^{-15} = 0.671 \text{pF}$	$\overline{C_{\mu}} = 4.11 \text{ x } 10^{-12} = 4.11 \text{ pF}$
g_m^{ga} = 3.68 x 10 ⁻³	C_{π}^{\prime} = 52.5 x 10 ⁻¹² = 52.5 pF
-	$F_T = 111 \times 10^6 = 111 \text{ MHz}$
	$r_X = 10\Omega$
	r _o = 75.6 x 10 ³ = 75.6kΩ

We have all the values contained within the equation: -

$$f_{T} = \frac{1}{2\pi r_{e} \left(C_{\mu} + C_{\pi} \right)}$$

Let's test this equation, put values C_{μ} , C_{π} and r_e into equation and compare calculated f_{τ} with the value of f_{τ} contained in the PSpice output file.

$$f_{\mathcal{T}_{CAL}} = \frac{1}{2\pi 25 \left(4.11 \times 10^{-12} + 52.5 \times 10^{-12}\right)} = \frac{1}{8.89228 \times 10^{-9}} = 112.457 \times 10^{6} = 112.5 \text{MHz}$$

It's clear that the equation above for working out f_{τ} offers an extremely good approximation, as there was only difference of 1.313% between the calculated value and the PSpice value.

Calculation of f_{n1}

$$R' = R_{in} || R = 333.33K || 10K = \frac{333.33 \times 10^3 \times 10 \times 10^3}{333.33 \times 10^3 + 10 \times 10^3} = \frac{3.3333 \times 10^9}{343.33 \times 10^3} = 9.70874 \times 10^3 = 9.709K\Omega$$
$$f_{n1} = \frac{1}{2\pi R'C_{qd}} = \frac{1}{2\pi 9.709 \times 10^3 \times 671 \times 10^{-15}} = \frac{1}{40.9322 \times 10^{-9}} = 24.4306 \times 10^6 = 24.43MHz$$

Calculation of *f*_{n2}

$$R_{oi} = R_{\rm S} || \frac{1}{g_m} = 2.6 {\rm K} || \frac{1}{3.68 \times 10^{-3}} = 2.6 {\rm K} || 271.739 = 246.026 = 246 {\rm \Omega}$$

$$R'' = R_{oi} || \beta r_e = 246.026 || 3750 = \frac{246.026 \times 3750}{246.026 + 3750} = 230.879\Omega$$

 $A_2 = 32.96$

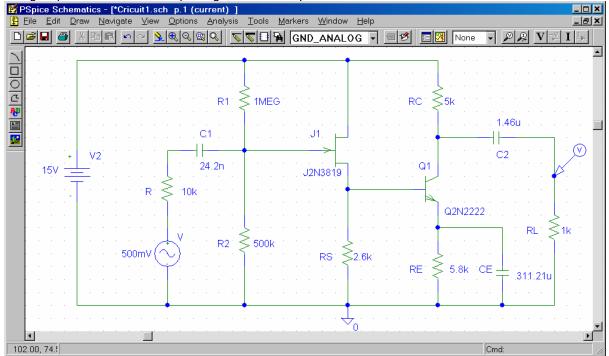
$$C'' = C_{\pi} || (1+A_2)C_{\mu} = C_{\pi} + ((1+A_2)C_{\mu}) = 52.5 \times 10^{-12} + ((1+32.96)4.11 \times 10^{-12}) = 192.076 \times 10^{-12}$$

 $f_{n2} = \frac{1}{2\pi R"C"} = \frac{1}{2\pi 230.879 \times 192.076 \times 10^{-12}} = \frac{1}{278.634 \times 10^{-9}} = 3.58891 \times 10^{6} = 3.6 \text{MHz}$

Calculation of f_{n3}

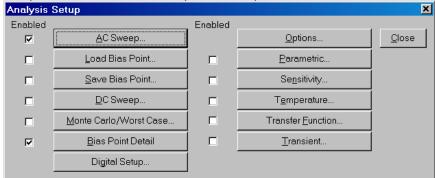
$$R''' = R_L || R_C || r_0 = 1K || 5K || 75.6K = \frac{1}{\frac{1}{1 \times 10^3} + \frac{1}{5 \times 10^3} + \frac{1}{75.6 \times 10^3}} = 824.248\Omega$$

$$f_{n3} = \frac{1}{2\pi R^{\text{III}} \frac{A_2 + 1}{A_2} C_{\mu}} = \frac{1}{2\pi \times 824.248 \times \frac{33.96}{32.96} \times 4.11 \times 10^{-12}} = \frac{1}{21.9311 \times 10^{-9}} = 45.5974 \times 10^6 = 45.6\text{MHz}$$

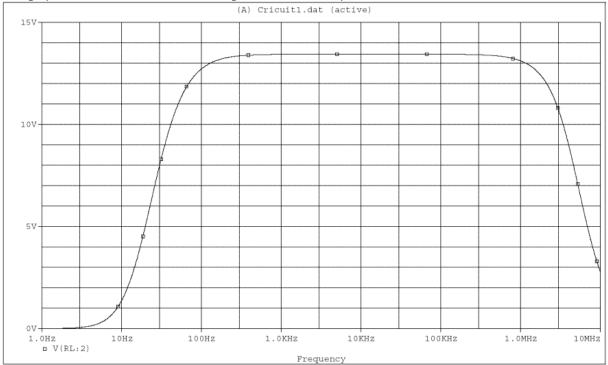

Calculation of 3_{dB} high-frequency cut-off (f_n)

Clearly a dominant pole exists at $f_{n2} \, \text{and} \, \text{we can write:} \, \ \text{-}$

 $f_n \approx 3.6 \text{Mhz}$


$$\frac{1.15}{f_n} = \frac{1}{f_{n1}} + \frac{1}{f_{n2}} + \frac{1}{f_{n3}}$$
$$\frac{1.15}{f_n} = \frac{1}{24.4\text{M}} + \frac{1}{3.6\text{M}} + \frac{1}{45.6\text{M}}$$
$$f_n = \frac{1.15}{\frac{1}{24.4\text{M}} + \frac{1}{3.6\text{M}} + \frac{1}{45.6\text{M}}} = \frac{1.15}{340.691 \times 10^{-9}} = 3.37549 \times 10^6 = 3.4\text{MHz}$$

(d) Simulation of circuit and comparison of results with calculated / designed values


Using PSpice circuit simulation package, screen dump of circuit shown below: -

Setup simulator for an "AC sweep" and "bias point detail": -

Configure "AC Sweep": -

AC Sweep and Nois	se Analysis	×
AC Sweep Type —	-Sweep Parameter	s
O <u>L</u> inear	Pts/Decade:	1000
○ <u>O</u> ctave	<u>S</u> tart Freq.:	1
• Decade	<u>E</u> nd Freq.:	10MEG
-Noise Analysis		
Noise Enabled	<u>O</u> utput Voltage:	
	I/V <u>S</u> ource:	
	<u>I</u> nterval:	
ОК	Cancel	

The graph below is the result of simulating the circuit under specified conditions: -

Voltage Gain =
$$\frac{V_{MAX}}{V} = \frac{13.44}{.5} = 26.88$$

Voltage Gain (dB) = 20log(26.88) = 28.5886dB

 3_{dB} Voltage Gain (dB) = Voltage Gain (dB) - 3 = 28.5886 - 3 = 25.5886dB

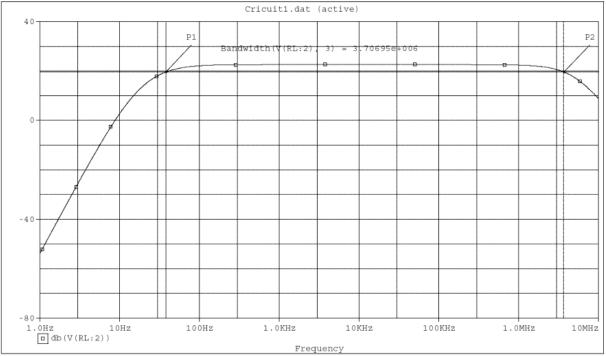
 3_{dB} Voltage Gain = $10^{\frac{25.5886}{20}} = 19.0296$

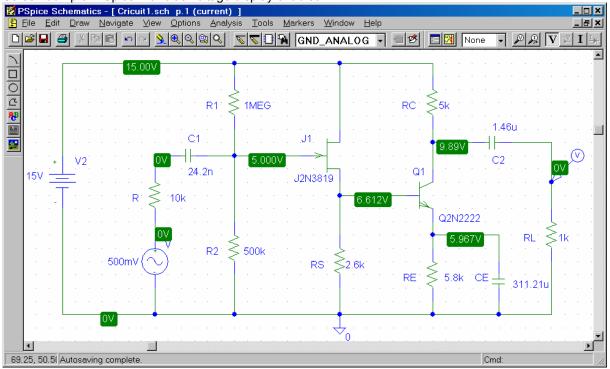
3dB Voltage = 3_{dB} Voltage Gain \times V = 19.0296 \times .5 = 9.51479V

Using "Probe Cursor", get "low frequency cut-off", "high frequency cut-off" and "Bandwidth": -

Probe	Cursor	
A1 =	38.009,	9.527
A2 =	3.7078M,	9.515
dif=	-3.7078M,	12.085m

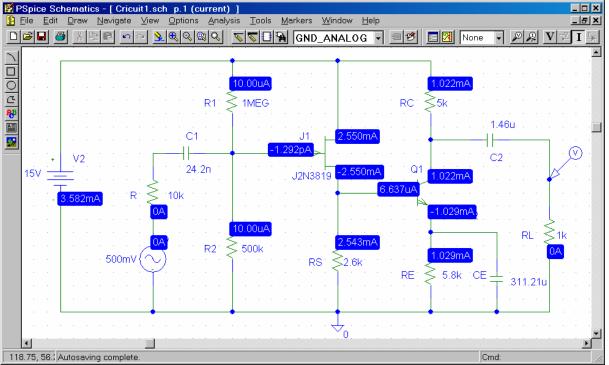
Low frequency cut-off \approx 38.009Hz High frequency cut-off \approx 3.7078MHz Bandwidth \approx 3.7078MHz

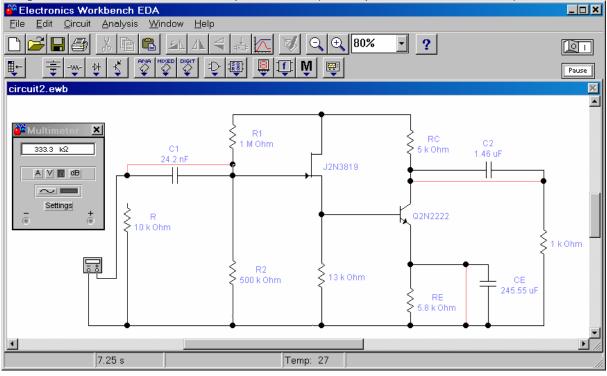

This is not the only way of getting "Low frequency cut-off", "high frequency cut-off" and "Bandwidth using PSpice. A simpler way is to used the "Goal Functions" feature of PSpice, e.g. bring up the "Goal Functions" dialogue box from Menu item [Trace] [Goal Functions] and select the "Bandwidth" goal function. Screen dump of dialogue box shown below: -


Goal Functions			
D			
Bandwidth BPBW		_	New
CenterFreq			
Falltime			С <u>о</u> ру
GainMargin			
GenFall			View
GenRise			
HPBW			
LPBW			<u>E</u> dit
Max			
MAXr			<u>D</u> elete
Min MINr			
Overshoot			Ev <u>a</u> l
Peak			
Period			
PhaseMargin		-	Load
	Close		Help

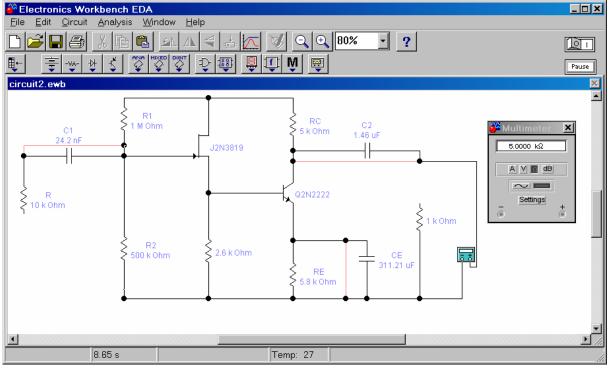
Click the [Eval] button and the following will appear: -

Arguments for Goal Function Evaluation
Goal Function Expression
Bandwidth(V(RL:2), 3)
The Goal Function 'Bandwidth' has 2 arguments. Please fill them in now.
Name of trace to search 🔛 🕅 (RL:2)
db level down for bandwidth calc 3
<u>Q</u> K <u>C</u> ancel


Select the trace and enter 3dB then click OK, the following will appear: -



Screen dump of PSpice with bias voltage display enabled: -


Screen dump of PSpice with bias current display enabled: -

Using electronic workbench to measure output resistance (note: capacitors are short-circuited): -

	Design / Calculated Value	Simulated Value	Difference	% Difference
I _D	2.5mA	2.55mA	0.05mA	2.00%
I _C	1mA	1.022mA	0.022mA	2.20%
I _S	2.5mA	2.543mA	0.043mA	1.72%
IE	1mA	1.029mA	0.029mA	2.90%
V _G	5V	5V	0.00V	0.00%
V _{GS}	-1.5V	-1.61V	0.11V	7.33%
Vs	6.5V	6.612V	0.112V	1.72%
V _E	5.8V	5.967V	0.167V	2.88%
V _c	10V	9.89V	0.11V	1.11%
<i>g</i> _m	3.33mA/V	3.68mA/V	0.350mA/V	10.51%
r _o	74kΩ	75.6kΩ	1.6κΩ	2.15%
R _{in}	333.33ΚΩ	333.3kΩ	0.00kΩ	0.00%
Ro	4.68kΩ	5kΩ	0.32kΩ	6.84%
f _T	112.457MHz	111MHz	1.457MHz	1.31%
Low Frequency Cut-off	50Hz	38.01Hz	11.99Hz	31.54%
High Frequency Cut-off	3.4MHz	3.708MHz	0.308MHz	9.06%
Voltage Gain	27.36	26.88	0.48	1.79%

Comparison Table

Conclusions

Simulated voltages (V_G , V_S , V_E , V_C) and currents (I_D , I_C , I_S , I_E) were extremely close (<3%) to the designed / calculated values. Proving the methods used in the design of the resistors are reasonable actuate. V_{GS} was 7.33% out, hence it's clear that the value of $|V_p|$ (from datasheet) used in the design of the amplifier was not 100% actuate as: -

$$V_{\rm GS} = \frac{V_P}{2}$$

It is known that V_{GS} is -1.61V (from PSpice output file) hence V_P actually was -3.22V. If this value was used in the design of the amplifier it's would have produced more actuate results.

Notice g_m is 10.51% out, using the equation below it's clear that the value of I_{DSS} (from datasheet) used in the design of the amplifier may not be 100% actuate.

$$g_m = \frac{2I_{DSS}}{\left|V_p\right|} \sqrt{\frac{I_D}{I_{DSS}}}$$

Using PSpice values of g_m , V_p and I_D it is possible to calculate the actual value of I_{DSS} : -

$$I_{DSS} = \frac{g_m^2 |V_P|^2}{4I_D} = \frac{\left(3.68 \times 10^{-3}\right)^2 \times 3.22^2}{4 \times 2.55 \times 10^{-3}} = 13.766 \times 10^{-3} = 13.77 \text{mA}$$

If this correct value of I_{DSS} was used in the design of the amplifier it would have produce more actuate results.

The calculated voltage gain only differed by 1.79% with respect to the simulated PSpice value. Proving the technique used to calculated this voltage gain offers a reasonably actuate result.

The low frequency cut-off was a full 31.54% out, which tells us that something maybe wrong with the design. Although the low frequency cut-off was designed to be 50Hz or less, hence the objective has been achieved.

If the correct values of I_{DSS} , V_P and β were used in the design of the amplifier it may significantly improve the low frequency cut-off. Also the method used to calculate τ is an approximation and is not exact, and will have contributed to the error.

Percentage errors up to 10% are usually considered acceptable for analogue amplifier design. The high frequency cut-off differed by 9.06%, this error is acceptable and expected as the technique used in the calculation of high frequency cut-off is an approximation and is not exact.

Other reasons why design / calculated values differed from the simulated values: -

- Simulation packages like PSpice and electronic workbench simulate real life conditions including the tolerances of components: resistors (typically 1-2%), capacitors (typically 10-20%) and transistors etc...
- The operating temperature is simulated which affects the operation of the circuit. All simulations which were carried out on the amplifier were simulated with an operating temperature of 27°C.
- Many of the formula used in the design are ROT (Rules of Thumb) which are designed for ease of use and may not be completely actuate.

It is possible to improve the design of an amplifier using a simulation package like PSpice, without making any calculations. For example capacitor values can be changed then simulate the output and make a note on how the low frequency cut-off is changed, using this method of trial-and-error it was discovered that if C_1 was changed to 14.2nF (instead of 24.2nF) the low frequency cut-off was be changed to 48Hz (improvement of 10Hz).

Note that capacitor and resistor values used in the simulation of the amplifier were set exactly to the calculated value and not available practical values (e.g. C_1 is 311.21µF, but in the real world 330µF would have to be used). The reason why practical values were not used is because a more complete comparison could be made.

It is clear that simulation programs like PSpice are extremely useful as they can be used to test and improve amplifier circuit designs easily and cheaply. It is also clear that the ROT (Rules of Thumb) used in the design of this amplifier work well, which resulted in a reasonable good amplifier design. As computers get more and more powerful, simulators will become more powerful making the life of the design engineer easier and perhaps in-time these programs will be able to design circuits automatically from some technical specifications.

APPENDIX 1 – PSPICE OUTPUT FILE

* C:\Work\Colin\EDUCATIONAL WORK\Beng (hons) electronics systems\Year 4\Assigment\Electronic Circuit Design\Analog\Ass1\pSpice\Cricu **** CIRCUIT DESCRIPTION * Schematics Version 9.1 - Web Update 1 * Sat Nov 10 20:59:01 2001 ** Analysis setup ** .ac DEC 1000 1 10MEG .OP .STMLIB "Schematic1.stl" * From [PSPICE NETLIST] section of pspiceev.ini: .lib "nom.lib" .INC "Cricuit1.net" **** INCLUDING Cricuit1.net **** * Schematics Netlist * R_RL 0 \$N_0001 1k \$N_0003 \$N_0002 10k R_R R_RC \$N_0005 \$N_0004 5k R_R1 \$N_0006 \$N_0004 1MEG R_R2 0 \$N_0006 500k \$N_0004 \$N_0006 \$N_0007 J2N3819 J_J1 Q_Q1 \$N_0005 \$N_0007 \$N_0008 Q2N2222 \$N_0004 0 15V V_V2 \$N_0003 0 DC 0V AC 500mV V_V R_RS 0 \$N_0007 2.6k 0 \$N_0008 5.8k 0 \$N_0008 311.21u R_RE C_CE \$N_0002 \$N_0006 24.2n C_C1 \$N_0001 \$N_0005 1.46u C_C2 **** RESUMING Cricuit1.cir **** .INC "Cricuit1.als" **** INCLUDING Cricuit1.als **** * Schematics Aliases * .ALIASES R RL RL(1=0 2=\$N_0001) R_R R(1=\$N_0003 2=\$N_0002) RC(1=\$N_0005 2=\$N_0004) R_RC R_R1 R1(1=\$N_0006 2=\$N_0004) R_R2 R2(1=0 2=\$N_0006)

J1(d=\$N_0004 g=\$N_0006 s=\$N_0007) J_J1 Q_Q1 $Q1(c=\$N_0005 b=\$N_0007 e=\$N_0008)$ $V2(+=\$N_0004 -=0)$ V_V2 v_v $V(+=\$N_0003 -=0)$ R_RS RS(1=0 2=\$N_0007) RE(1=0 2=\$N_0008) R_RE CE(1=0 2=\$N_0008) C_CE C_C1 C1(1=\$N_0002 2=\$N_0006) C2(1=\$N_0001 2=\$N_0005) C_C2 .ENDALIASES **** RESUMING Cricuit1.cir **** .probe .END **** 11/11/01 13:13:03 ********** Evaluation PSpice (Nov 1999) ***************** * C:\Work\Colin\EDUCATIONAL WORK\Beng (hons) electronics systems\Year 4\Assigment\Electronic Circuit Design\Analog\Ass1\pSpice\Cricu * * * * BJT MODEL PARAMETERS Q2N2222 NPN IS 14.340000E-15 BF 255.9 NF 1 VAF 74.03 TKF .2847 14.340000E-15 ISE NE 1.307 6.092 BR NR 1 10 RB RC 1 CJE 22.010000E-12 .377 MJE 7.306000E-12 CJC .3416 MJC TF 411.100000E-12 XTF 3 VTF 1.7 ITF .6 TR 46.910000E-09 1.5 XTB CN2.42 D .87 * C:\Work\Colin\EDUCATIONAL WORK\Beng (hons) electronics systems\Year 4\Assigment\Electronic Circuit Design\Analog\Ass1\pSpice\Cricu

**** Junction FET MODEL PARAMETERS J2N3819 NJF VTO -3 BETA 1.304000E-03 2.250000E-03 LAMBDA 33.570000E-15 IS ISR 322.400000E-15 ALPHA 311.700000E-06 VK 243.6 RD 1 RS 1 1.600000E-12 CGD 2.414000E-12 CGS Μ .3622 VTOTC -2.500000E-03 BETATCE -.5 KF 9.882000E-18 **** 11/11/01 13:13:03 *********** Evaluation PSpice (Nov 1999) ***************** * C:\Work\Colin\EDUCATIONAL WORK\Beng (hons) electronics systems\Year 4\Assigment\Electronic Circuit Design\Analog\Ass1\pSpice\Cricu * * * * TEMPERATURE = 27.000 DEG C SMALL SIGNAL BIAS SOLUTION NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE (\$N_0001) 0.0000 (\$N_0002) 0.0000 (\$N_0003) 0.0000 (\$N_0004) 15.0000 (\$N_0005) 9.8894 (\$N_0006) 5.0000 (\$N_0007) 6.6121 (\$N_0008) 5.9667 VOLTAGE SOURCE CURRENTS NAME CURRENT V_V2 -3.582E-03 0.000E+00 V_V TOTAL POWER DISSIPATION 5.37E-02 WATTS * C:\Work\Colin\EDUCATIONAL WORK\Beng (hons) electronics systems\Year 4\Assigment\Electronic Circuit Design\Analog\Ass1\pSpice\Cricu

* * * *	ODEDIMING DOINT INCOMMICN		
	OPERATING POINT INFORMATION	TEMPERATURE =	27.000 DEG C
******	* * * * * * * * * * * * * * * * * * * *	· • • • • • • • • • • • • • • • • • • •	****
*******			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
**** סתדת	OLAR JUNCTION TRANSISTORS		
BIF	ULAR UUNCIION IRANSISIURS		
NAME	0.01		
NAME MODEL	Q_Q1 Q2N2222		
IB	6.64E-06		
IC	1.02E-03		
VBE	6.45E-01		
VBC	-3.28E+00		
VCE	3.92E+00		
BETADC	1.54E+02		
GM	3.94E-02		
RPI	4.33E+03		
RX	1.00E+01		
RO	7.56E+04		
CBE	5.25E-11		
CBC	4.11E-12		
CJS BETAAC	0.00E+00 1.70E+02		
CBX/CBX2			
FT/FT2	1.11E+08		
11/112	1.111.00		
**** JFE1	TS		
NAME	J_J1		
MODEL	J2N3819		
ID	2.55E-03		
VGS	-1.61E+00		
VDS	8.39E+00		
GM	3.68E-03		
GDS	5.63E-06		
CGS	1.70E-12		
CGD	6.71E-13		
	JOB CONCLUDED		
	TOTAL JOB TIME 1.39)	

N-Channel JFET

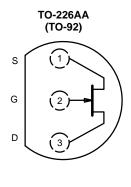
PRODUCT SUMMARY			
V _{GS(off)} (V)	V _{(BR)GSS} MIN (V)	g _{fs} MIN (MS)	I _{DSS} MIN (MA)
≤ −8	-25	2	2

FEATURES

- Excellent High-Frequency Gain: Gps 11 dB @ • 400 MHz
- Very Low Noise: 3 dB @ 400 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation
- High Gain: $A_V = 60 @ 100 \ \mu A$

BENEFITS

- Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification •
- High-Speed Switching Capability •
- High Low-Level Signal Amplification


APPLICATIONS

- High-Frequency Amplifier/Mixer •
- Oscillator
- Sample-and-Hold •
- Very Low Capacitance Switches

DESCRIPTION

The 2N3819 is a low-cost, all-purpose JFET which offers good performance at mid-to-high frequencies. It features low noise and leakage and guarantees high gain at 100 MHz.

Its TO-226AA (TO-92) package is compatible with various tape-and-reel options for automated assembly (see Packaging Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet.

Top View

ABSOLUTE MAXIMUM RATINGS

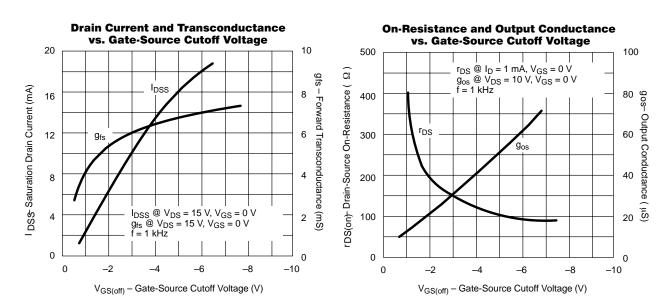
Gate-Source/Gate-Drain Voltage25 V
Forward Gate Current 10 mA
Storage Temperature $\hdots 150^\circ C$
Operating Junction Temperature $\ldots \ldots \ldots \ldots \ldots \ldots -55$ to $150^\circ C$

Lead Temperature (1/16" from case for 10 sec.) 30)0°C
Power Dissipation ^A	mW
Notes	
A. Derate 2.8 mW/°C above 25°C	

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70238.

Vishay Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-52424-Rev. C, 14-Apr-97 Siliconix was formerly a division of TEMIC Semiconductors

Siliconix

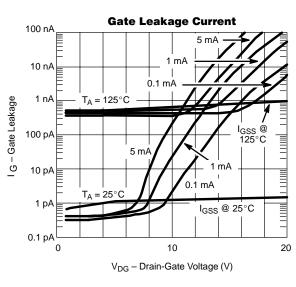

				LIMITS			
PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP ^B	MAX	UNIT
STATIC				•			•
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \ \mu A$, V	_{DS} = 0 V	-25	-35		
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 15 V, I	_D = 2 nA		-3	-8	V
Saturation Drain Current ^C	I _{DSS}	V _{DS} = 15 V, V	′ _{GS} = 0 V	2	10	20	mA
Gate Reverse Current		V _{GS} = -15 V, V	/ _{DS} = 0 V		-0.002	-2	nA
Gate Reverse Current	IGSS		$T_A = 100^{\circ}C$		-0.002	-2	μA
Gate Operating Current ^D	Ι _G	V _{DG} = 10 V, I _D = 1 mA			-20		pА
Drain Cutoff Current	I _{D(off)}	V _{DS} = 10 V, V _{GS} = -8 V			2		
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 V$, $I_D = 1 mA$			150		Ω
Gate-Source Voltage	V _{GS}	$V_{DS} = 15$ V, $I_{D} = 200 \ \mu A$		-0.5	-2.5	-7.5	v
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 1 mA , V _{DS} = 0 V			0.7		ľ
DYNAMIC							-
Common-Source Forward Transconductance ^D	G.		f = 1 kHz	2	5.5	6.5	mS
Common-Source r orward manscollductance-	9 _{fs}	V _{DS} = 15 V V _{GS} = 0 V	f = 100 MHz	1.6	5.5		
Common-Source Output Conductance ^D	9 _{os}	f = 1 kHz			25	50	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz			2.2	8	~
Common-Source Reverse Transfer Capacitance	C _{rss}				0.7	4	pF
Equivalent Input Noise Voltage ^D	ēn	V _{DS} = 10 V, V _{GS} = 0	0 V, f = 100 Hz		6		nV∕ √Hz

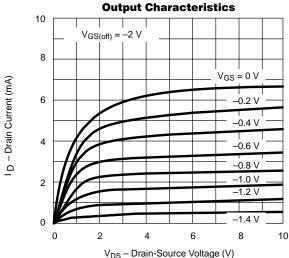
Notes

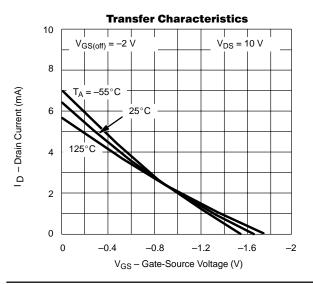
 $T_A = 25^{\circ}$ C unless otherwise noted. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. Pulse test: PW $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$. This parameter not registered with JEDEC. A. B.

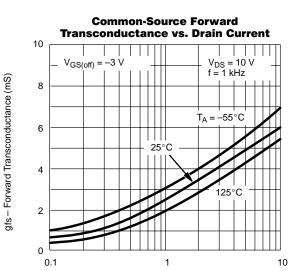
C. D.

TYPICAL CHARACTERISTICS

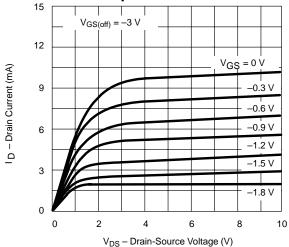


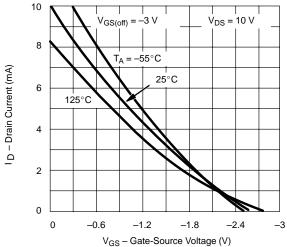

Vishay Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-52424—Rev. C, 14-Apr-97 Siliconix was formerly a division of TEMIC Semiconductors




2N3819 Siliconix

TYPICAL CHARACTERISTICS

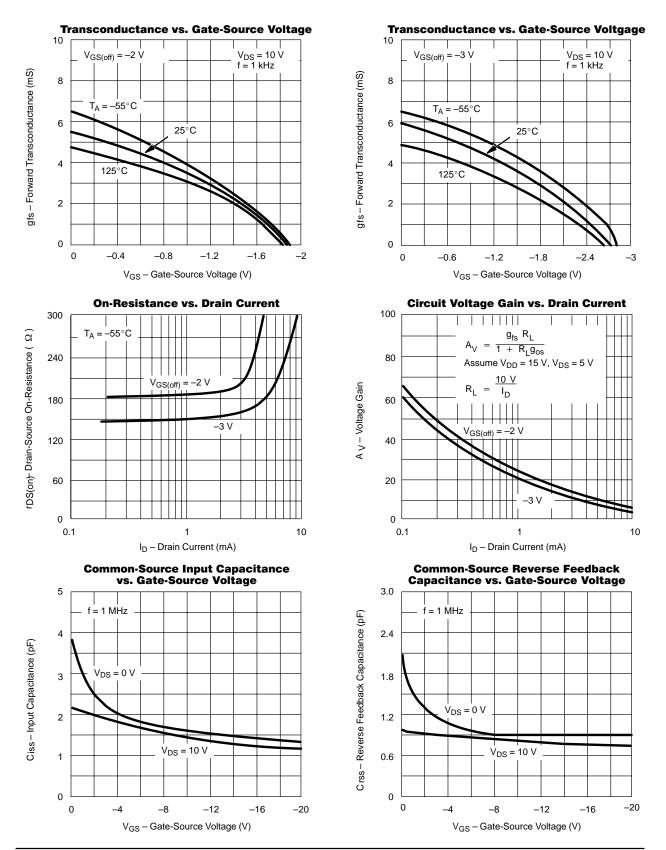




I_D – Drain Current (mA)

Output Characteristics

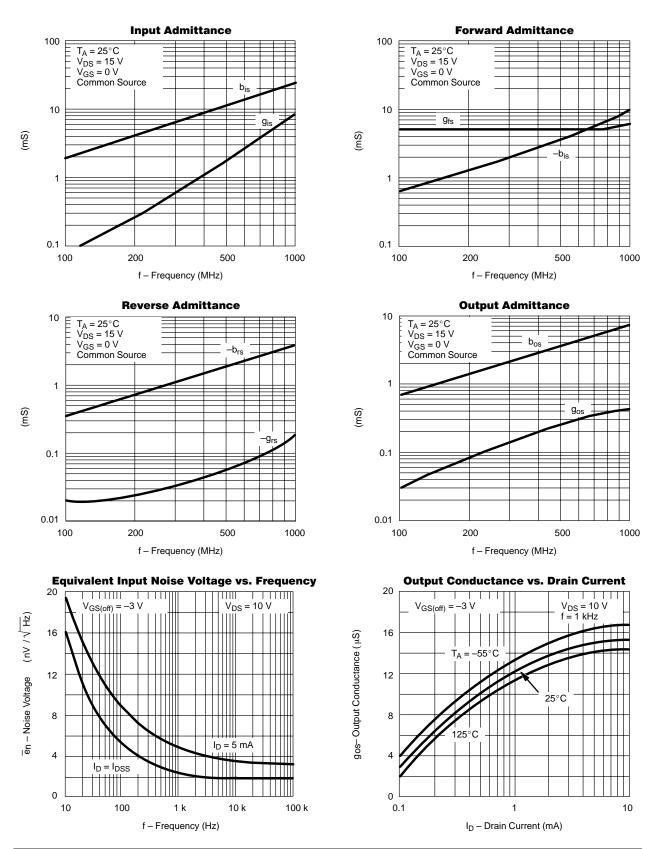
Transfer Characteristics



Vishay Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-52424—Rev. C, 14-Apr-97 Siliconix was formerly a division of TEMIC Semiconductors

Siliconix

TYPICAL CHARACTERISTICS



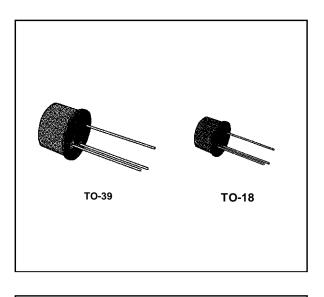
Vishay Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-52424—Rev. C, 14-Apr-97 Siliconix was formerly a division of TEMIC Semiconductors

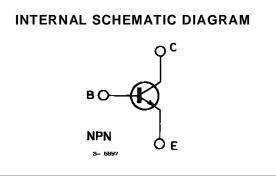
2N3819 Siliconix

TYPICAL CHARACTERISTICS

Vishay Siliconix, 2201 Laurelwood Road, Santa Clara, CA 95054 • Phone (408)988-8000 • FaxBack (408)970-5600 • www.siliconix.com S-52424—Rev. C, 14-Apr-97 Siliconix was formerly a division of TEMIC Semiconductors

2N2218-2N2219 2N2221-2N2222


HIGH-SPEED SWITCHES


DESCRIPTION

The 2N2218, 2N2219, 2N2221 and 2N2222 are silicon planar epitaxial NPN transistors in Jedec TO-39 (for 2N2218 and 2N2219) and in Jedec TO-18 (for 2N2221 and 2N2222) metal cases. They are designed for high-speed switching applications at collector currents up to 500 mA, and feature useful current gain over a wide range of collector current, low leakage currents and low saturation voltages.

2N2218/2N2219 approved to CECC 50002-100, 2N2221/2N2222 approved to CECC 50002-101 available on request.

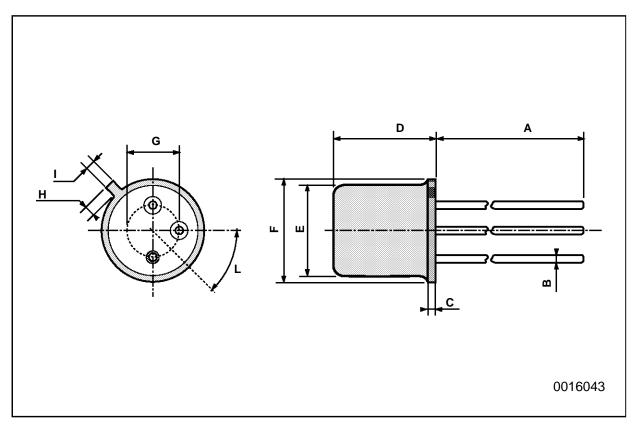
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base Voltage $(I_E = 0)$	60	V
V _{CEO}	Collector-emitter Voltage $(I_B = 0)$	30	V
V _{EBO}	Emitter-base Voltage $(I_C = 0)$	5	V
Ι _C	Collector Current	0.8	А
P _{tot}	Total Power Dissipation at $T_{amb} \le 25$ °C for 2N2218 and 2N2219 for 2N2221 and 2N2222 at $T_{case} \le 25$ °C for 2N2218 and 2N2219 for 2N2221 and 2N2222	0.8 0.5 3 1.8	v v v v
T _{stg}	Storage Temperature	– 65 to 200	°C
Тj	Junction Temperature	175	°C

THERMAL DATA

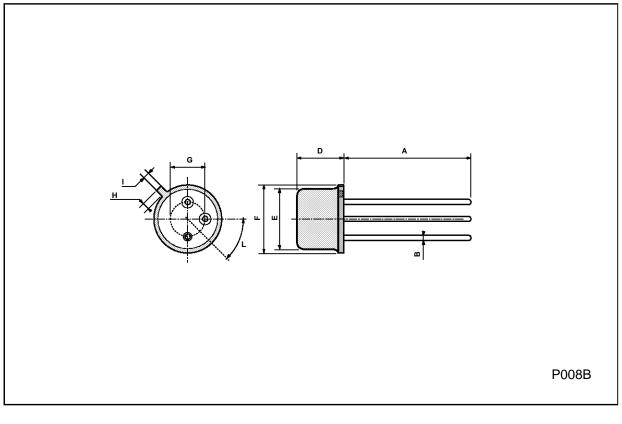
			2N2218 2N2219	2N2221 2N2222
R _{th j-case}	Thermal Resistance Junction-case	Max	50 °C/W	83.3 °C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	187.5 °C/W	300 °C/W

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \ ^{\circ}C$ unless otherwise specified)


Symbol	Parameter	neter Test Conditions			Тур.	Max.	Unit
I _{CBO}	Collector Cutoff Current $(I_E = 0)$	V _{CB} = 50 V V _{CB} = 50 V	T _{amb} = 150 ℃			10 10	nA μA
Ι _{ΕΒΟ}	Emitter Cutoff Current $(I_{C} = 0)$	V _{EB} = 3 V				10	nA
$V_{(BR) \ CBO}$	Colllector-base Breakdown Voltage (I _E = 0)	I _C = 10 μA		60			V
$V_{(BR)CEO}^{*}$	Collector-emitter Breakdown Voltage $(I_B = 0)$	I _C = 10 mA		30			V
$V_{(BR) EBO}$	Emittter-base Breakdown Voltage (I _C = 0)	I _E = 10 μA		5			V
V _{CE (sat)} *	Collector-emitter Saturation Voltage	I _C = 150 mA I _C = 500 mA	I _B = 15 mA I _B = 50 mA			0.4 1.6	V V
V _{BE (sat)} *	Base-emitter Saturation Voltage	I _C = 150 mA I _C = 500 mA	I _B = 15 mA I _B = 50 mA			1.3 2.6	V V
h _{FE} *	DC Current Gain	for 2N2218 at $l_c = 0.1 \text{ mA}$ $l_c = 1 \text{ mA}$ $l_c = 10 \text{ mA}$ $l_c = 150 \text{ mA}$ $l_c = 500 \text{ mA}$ $l_c = 500 \text{ mA}$ $l_c = 0.1 \text{ mA}$ $l_c = 10 \text{ mA}$ $l_c = 10 \text{ mA}$ $l_c = 500 \text{ mA}$ $l_c = 500 \text{ mA}$ $l_c = 150 \text{ mA}$ $l_c = 150 \text{ mA}$	$V_{CE} = 10 V$ $V_{CE} = 1 V$ and 2N2222 $V_{CE} = 10 V$	20 25 35 40 20 20 35 50 75 100 30 50		120 300	
f _T	Transition Frequency	I _C = 20 mA f = 100 MHz	V _{CE} = 20 V	250			MHz
C _{CBO}	Collector-base Capacitance	I _E = 0 f = 100 kHz	V _{CB} = 10 V			8	pF
$R_{e(hie)}$	Real Part of Input Impedance	I _C = 20 mA f = 300 MHz	V _{CE} = 20 V			60	Ω

* Pulsed : pulse duration = 300 μ s, duty cyde = 1 %.

DIM.		mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А		12.7			0.500		
В			0.49			0.019	
D			5.3			0.208	
E			4.9			0.193	
F			5.8			0.228	
G	2.54			0.100			
Н			1.2			0.047	
I			1.16			0.045	
L	45°			45°			



2N2218-2N2219-2N2221-2N2222

TO39 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	12.7			0.500		
В			0.49			0.019
D			6.6			0.260
E			8.5			0.334
F			9.4			0.370
G	5.08			0.200		
н			1.2			0.047
I			0.9			0.035
L	45° (typ.)					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

